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We present a novel deterministic model that is capable of predicting particle-to-particle
force and torque fluctuations in a fixed bed of randomly distributed monodisperse
spheres. First, we generate our dataset by performing particle-resolved direct numerical
simulations (PR-DNS) of arrays of stationary spheres in moderately inertial regimes
with a Reynolds number range of 2 ≤ Re ≤ 150 and a solid volume fraction range of
0.1 ≤ φ ≤ 0.4. The key idea exploited by our model is that, while the arrangement of
neighbours around each particle is uniform and random, conditioning forces or torques
exerted on a reference sphere to specific ranges of values results in the emergence of
significantly non-uniform distributions of neighbouring particles. Based on probabilistic
arguments, we take advantage of the statistical information extracted from PR-DNS to
construct force/torque-conditioned probability distribution maps, which are ultimately
used as basis functions for regression. Given the locations of surrounding particles as
input to the model, our results demonstrate that the present probability-driven framework
is capable of predicting up to 85 % of the actual observed force and torque variation in the
best cases. Since the precise location of each particle is known in an Eulerian–Lagrangian
(EL) simulation, our model would be able to estimate the unresolved subgrid force and
torque fluctuations reasonably well, and thereby considerably enhance the fidelity of EL
simulations via improved interphase coupling.
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1. Introduction

The ubiquity of flows where a dispersion of particles is carried by a fluid phase
has motivated many theoretical, experimental and numerical studies. Such systems, also
referred to as particle-laden flows, are widely encountered in natural and industrial
settings. Sediment transport, rain and drop formation, fluidised beds and slurry flows are
only a few examples among many where particle-laden flows occur. Analytical treatment
of these systems is generally limited to asymptotic cases with very low Reynolds numbers
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FIGURE 1. Depiction of the concept of multiscale strategy in modelling particle-laden flows.

and solid volume fractions, whereas the practical interest usually lies in the opposite end of
this spectrum. Conversely, the unprecedented availability of massive computational power
in the past two decades has substantially promoted the utility of numerical methods for
investigation of particle-laden flows.

In a dispersed multiphase system, particles interact with each other locally on the
length scale of the particle diameter d, which could lead to the occurrence of close-range
phenomena such as drafting–kissing–tumbling (DKT) due to wake attraction in inertial
regimes (Fortes, Joseph & Lundgren 1987; Dash & Lee 2015). Interactions of this nature
are known to contribute to the formation of particle clusters that extend several diameters
(Kajishima & Takiguchi 2002; Uhlmann & Doychev 2014; Fornari, Ardekani & Brandt
2018). These structures, in turn, potentially interact with each other and thus bring about
an integral length scale that could be one or two orders of magnitude larger than d.
Clustering of water droplets in clouds is an interesting natural example, which is known to
greatly enhance coalescence and thereby explaining the growth rate of droplets (Collins &
Keswani 2004). On the other hand, clusters have a remarkable effect on particle residence
time, and heat and mass transfer in circulating fluidised beds (Louge, Lischer & Chang
1990; Wylie & Koch 2000). A fluidised bed reactor in a fluid catalytic cracking unit is
typically 14 m high and 6 m in diameter. Within such a device, fluid–solid interactions
and particle collisions in the sub-millimetre scale can directly influence flow structures
such as clusters of the order of metres (van der Hoef et al. 2008). The enhancement of
local concentration of particles in clusters also leads to increased collision rates. Clearly,
the time scale of particle collisions is much shorter than convective or diffusive time
scale of the flow, creating yet another level of scale separation. The cascade of such
multi-scale interactions modifies the character of particle suspensions and significantly
affects quantities of interest, such as settling rate and particle velocity fluctuations (Zaidi,
Tsuji & Tanaka 2014; Zaidi 2018; Willen & Prosperetti 2019). Due to the presence of
a wide range of length scales, a single description of the physics would fail to provide
balance between the required complexity or resolution, and the associated computational
cost for all involved scales. This is the motivation for development of various numerical
methodologies aiming at resolving the flow at three major length scales; namely, the
micro-, meso- and macroscale. Such a multi-scale methodology is schematically shown
in figure 1.

A micro-scale flow description assumes that particles are at least an order of magnitude
larger than fluid grid cells, meaning that the fluid–solid interface is well resolved. Since
the hydrodynamic forces and torques can be directly computed from the integration
of pressure and viscous stresses available as field variables, transfer of momentum
between phases involves no approximation or modelling, and is dictated by satisfying
the no-slip condition on the solid boundary. Micro-scale methods (i.e. particle-resolved
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direct numerical simulations, PR-DNS) were first introduced in the framework of
body-conforming moving-mesh methods (Feng, Hu & Joseph 1994a,b; Hu, Patankar &
Zhu 2001) where Navier–Stokes equations are solved on the fluid mesh, and particles
are treated as boundaries of the flow. As the system evolves, frequent re-meshings
become inevitable so as to adapt the computational grid to the new configuration of the
fluid–solid system, rendering such methods inefficient for simulating particle-laden flows.
Fixed-grid methods, also collectively called fictitious domain methods (Maxey 2017), were
proposed to relieve this burden by extending the fluid domain to include the particles and
solving Navier–Stokes equations over the entire fluid–particle domain, thus completely
eliminating the need for re-meshing. Immersed boundary methods (IBM) (Peskin 1977;
Mittal & Iaccarino 2005) and distributed Lagrange multiplier/fictitious domain (DLM-FD)
methods (Glowinski et al. 1999; Wachs 2010) are two such techniques which differ in
the enforcement of rigid-body motion in the particle domain and in the computation
of interaction forces. Another popular class of PR-DNS tools are the lattice Boltzmann
methods (LBM) which are based on kinetic theory of gases (Aidun & Clausen 2010). A
significant number of fixed-bed studies of particulate flows in the literature are carried out
using LBM (Hill, Koch & Ladd 2001a,b; van der Hoef, Beetstra & Kuipers 2005; Beetstra,
van der Hoef & Kuipers 2007; Bogner, Mohanty & Rüde 2015). Assuming particles of
typical size in the range of [200 μm, 1000 μm], the micro-scale approach is suitable for
simulating laboratory scale devices with a size of O(0.01 m) (van der Hoef et al. 2008), or
O(103–104) particles in the context of gas–solid fluidisation. Although PR-DNS provides
a complete and model-free description of particle-laden flows, handling systems at the
intermediate (i.e. meso) scale with a physical size of O(0.1 m) (van der Hoef et al. 2008)
containing O(105–106) well-resolved particles (Subramaniam 2013; Zhong et al. 2016)
has only recently been feasible with PR-DNS, and requires massively parallel computing
resources (Götz et al. 2010; Rettinger et al. 2017; Horne & Mahesh 2019; Willen &
Sierakowski 2019). The Eulerian–Lagrangian (EL) technique, on the other hand, attempts
to reduce computational costs by taking the volume of each fluid cell to be generally an
order of magnitude larger than that of an individual particle or at least to be of the order
of magnitude of that of an individual particle. Because flow in the immediate vicinity of
the particles is not resolved, direct computation of the hydrodynamic interaction force and
torque is not possible. Consequently, interphase coupling needs to be established via a
suitable force closure model. The fluid phase sees particles only as point sources and sinks
of momentum, with the volume of particles appearing solely through the local porosity
in the volume-averaged mass and momentum conservation equations and the employed
drag force correlation (van der Hoef, van Sint Annaland & Kuipers 2004). In such an
approach, the volume-averaged Navier–Stokes equations are solved on an Eulerian grid for
the fluid phase, whereas the positions of the particles are tracked using Newton’s equations
of motion in a Lagrangian manner. For the case of dense suspensions, this is usually
handled by the discrete element method (DEM) with a proper contact model accounting
for particle collisions (and hence the name discrete element method-computational fluid
dynamics or ‘DEM-CFD’). Since particles are treated as points suspended in fluid cells,
the EL method is also referred to as the point-particle (PP) method. This terminology,
however, may not be descriptive enough for the newer EL methods that are capable of
simulating finite-size particles with a diameter of the order of fluid cells (Capecelatro &
Desjardins 2013). Even with EL methods, modelling engineering scale pilot devices with a
size of O(1 m) containing O(109) particles is impractical at present, since tracking billions
of individual particles in a Lagrangian manner poses a serious computational challenge.
With that being the case, one could alleviate this issue by accounting for the presence of
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particles indirectly. The two-fluid model (TFM) (Gidaspow 1994) is a numerical model
employing an Eulerian–Eulerian approach, where the fluid and the solid are both assumed
to behave as interpenetrating continua. Since the solid phase is also modelled as a fluid
continuum, details of particle–particle interactions are embedded in the effective solid
pressure and shear and bulk viscosity closure terms. The two phases, in turn, interact
through an appropriate drag model (van der Hoef et al. 2004, 2008).

The up-scaling of simulations can be a viable alternative for PR-DNS only if the closure
models to be used are sufficiently accurate and faithful to the actual underlying physics.
In an EL simulation, the governing equations have to be closed with appropriate terms
accounting for the fluid–solid momentum transfer. Multiphase flow modelling enters the
stage to bridge the gap between PR-DNS and the EL approach by supplying this missing
piece of crucial information. The classical Stokes drag F = 3πμ du, with μ being the
dynamic viscosity of the fluid and u the fluid-particle relative velocity, is only valid at
vanishing Reynolds numbers, i.e. Re = 0, for a steady uniform flow around a fixed sphere.
When the macroscale undisturbed flow (the undisturbed flow is defined as the flow that
would have existed in the absence of a particle (Squires 2007, Balachandar 2009)) u is no
longer steady, one can use the Basset–Boussinesq–Oseen relation given as

F = F un + F D + F am + F h, (1.1)

where the terms on the right-hand side account for the undisturbed flow force, the
quasi-steady drag, added-mass and Basset history forces, respectively. The elegant
Faxén’s law (Faxen 1923) makes it possible to extend the validity of (1.1) to spatially
non-uniform flows by replacing the undisturbed flow u by us and uv, i.e. the average
value over the particle’s surface or volume. This formulation was derived by Maxey
and Riley (Maxey 1983) and Gatignol (Gatignol 1983) and is rigorously valid in the
Stokes limit. When particles are much smaller than the macroscopic length scale of the
flow, the particle Reynolds number based on relative slip velocity typically becomes
very small. This is the case when a dilute dispersion of particles are suspended in a
turbulent flow such that d/η � 1, where η shows the Kolmogorov scale. In this situation,
the Maxey–Riley–Gatignol (MRG) equation accurately predicts hydrodynamic forces
experienced by the particle. For inertial regimes with finite Reynolds numbers, force
contributions in the MRG equation should be modified and empiricism is inevitable due
to a lack of theoretical analysis. The standard drag curve of an isolated sphere given as
CD = (24/Re)(1 + 0.15Re0.687) (Schiller & Naumann 1933) is such a modification that
characterises the Reynolds number dependence of the quasi-steady drag term F D in the
MRG equation. For Re > 0, ambient shear or vorticity in the background flow gives rise to
the Saffman lift force (Saffman 1965), which is absent in the MRG equation since there is
no such lift force in Stokes flow (Maxey 1983). Furthermore, rotation of a particle induces
an excess lift even in uniform flow, which is attributed to the Magnus effect (Bagchi &
Balachandar 2002). The Magnus force should as well be included as an additional term
alongside the Saffman lift in the MRG equation when inertial regimes are considered. The
interested reader is referred to Subramaniam & Balachandar (2018) for a detailed overview
of various approaches of modelling dispersed multiphase flow.

The PP approach faces a serious challenge when the size of particles becomes
comparable to the scales of the macroscopic flow. When the carrier flow is already
turbulent, this occurs when d/η ≈ 1. The other scenario is when the particle concentration
increases and the suspension can no longer be regarded as dilute. Even at a solid
volume fraction of 1%, the average distance to the closest neighbour is only 3.7d
(Akiki, Jackson & Balachandar 2016). The likelihood of hydrodynamic interaction hence
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increases substantially. The disturbances created by the particles results in the appearance
of pseudo-turbulence, i.e. a non-uniform flow that not only varies spatially on the scale
of the particle diameter, but is also potentially prone to temporal fluctuations for high
enough Re. Extending the PP model to finite-size particles is hampered with significant
complications associated with the application of analytical or empirical force relations,
the expression of which are all in terms of undisturbed flow. In the context of finite-size
particles, the undisturbed flow is difficult to obtain since it requires evaluating the
same system but with a specific particle removed. Moreover, now that the particle is
relatively large, the undisturbed flow varies on the particle scale. How such a spatially
non-homogeneous flow would affect the resulting forces at finite Re remains an open
question (Balachandar 2009).

Parametrising the drag law in terms of solid volume fraction, in addition to the
Reynolds number, has been the first step towards the prediction of particle-laden flow
behaviour where collective effect of particles cannot be neglected. Theoretical studies
are limited to the Stokes flow conditions and very dilute suspensions; namely, Re →
0 and φ → 0 where φ denotes the solid volume fraction (Hasimoto 1959; Batchelor
1972; Sangani & Acrivos 1982). Proposed correlations by Wen & Yu (1966) for dilute
suspensions and Ergun’s equation (Ergun 1952) for denser systems are the earliest
experimental efforts in this regard. Exponential growth of computing power in the last
two decades has made PR-DNS a preferable alternative for developing more accurate
drag correlations over wider ranges of Re and φ. Contrary to the experimental approach,
arbitrary ideal flow conditions can be imposed, and forces are computed directly in
PR-DNS (Tang et al. 2015) instead of indirect measurement based on the settling velocity
(Richardson & Zaki 1954) or pressure drop (Ergun 1952). Among PR-DNS techniques,
LBM has been the method of choice in numerous studies on drag correlation. Hill
et al. (2001a) simulated a fixed bed of spheres with ordered and random arrangements
up to the close packing limit at low Re, and later for moderate Re (Hill et al. 2001b).
Bi-dispersity in random arrays of fixed spheres was also addressed at very low Re using
LBM by van der Hoef et al. (2005), and subsequently for Re up to 1000 by Beetstra
et al. (2007). Recently, other drag correlations were proposed by Bogner et al. (2015) using
LBM, and by Tang et al. (2015) and Tenneti, Garg & Subramaniam (2011) using IBM.

Even though the idea of simulating fixed beds of spheres instead of realistic moving
particles is justified by drawing analogy with high Stokes number gas–solid flows, this
simplification was challenged by Tang et al. (2015). They showed that at φ = 0.5, deviation
between the actual drag experienced by mobile particles and the drag computed from
static bed correlations is significant. A similar observation had been previously made
by Kriebitzsch, van der Hoef & Kuipers (2013), that not only are the gas–solid forces
underestimated by conventional drag laws in an EL simulation, but there is also a large
scatter of the drag data in a PR-DNS of fluidised beds which the EL approach fails to
capture. They noted that the higher drag force seems to correlate with local granular
temperature or particle agitation, which in turn is an outcome of subgrid force fluctuations.
In a recent work, Esteghamatian et al. (2018) attempted to alleviate the suppression
of granular temperatures by introducing a stochastic component in the drag closure,
the parameters of which were extracted from PR-DNS. Comparisons of their stochastic
model with conventional DEM-CFD indicated better prediction of granular temperatures
in liquid-solid regimes. Ultimately, the key missing component seems to pertain much
more conspicuously to the physical fidelity of the drag model rather than the accuracy of
fixed-bed drag correlations.

The preceding discussion signifies that unless the physics is properly accounted for, any
effort towards further improving EL simulations would be futile regardless of the accuracy
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of conventional drag correlations. From all the proposed drag models, we know that the
mean drag force experienced by the particles demonstrates a strong correlation with solid
volume fraction. In other words, the functional dependence of the drag model on φ is able
to account for the presence of other particles, but only and strictly in an average sense. It
does not matter whether a particle is shielded by an upstream neighbour or exposed entirely
to the oncoming flow, the drag law predicts the same force in both situations. Therefore, it
would be highly desirable to construct a force model that is capable of accounting for the
specific arrangement of surrounding particles; namely,

F i = f (Re, φ, {rj=1, . . . , rj=M}), (1.2)

where F i is the force experienced by particle i and rj the position vector of neighbour
j relative to particle i, while M denotes the number of influential neighbours and f
the functional dependence. Akiki et al. (2016) showed by analysis of PR-DNS data for
20 ≤ Re ≤ 180 and 0.11 ≤ φ ≤ 0.44 that there is a substantial scatter in the hydrodynamic
force experienced by individual particles due to the particular arrangement of surrounding
spheres, and that the local volume fraction had almost no correlation with the force
fluctuations. By utilising a simple anisotropic measure of each particle’s neighbourhood,
they were able to capture some of the drag variation, whereas results for the lift force
were less accurate. The notable work of Akiki, Jackson & Balachandar (2017a) and their
pairwise interaction extended point-particle (PIEP) model is the first to systematically
account for the effect of neighbouring particles on drag and lift in a deterministic
manner. Their model involved linear superposition of perturbations created by each
neighbouring particle in a pairwise manner in order to obtain the undisturbed flow, then
using Faxén’s law to compute various contributions to the total hydrodynamic force from
the non-uniform undisturbed flow. The PIEP model was shown to be capable of predicting
up to 75 % of the drag force variations for the (Re, φ) = (0.1, 38), whereas for a denser
case of (Re, φ) = (0.21, 87), approximately 56 % of the variations were captured. For the
lift, however, the results were not as promising. Subsequently, they extended their work
to include modelling of hydrodynamic torques as well, and also tested their model for
sedimentation of 2, 5 and 80 spheres (Akiki, Moore & Balachandar 2017b). Remarkably,
they were able to reproduce DKT of two spheres with the PIEP model in contrast to
the inability of standard PP approach to do so. Quite recently, the same group (Moore,
Balachandar & Akiki 2019) attempted to improve the shortcomings of the PIEP model
particularly at high volume fractions by combining a data-driven approach based on
nonlinear regression with their original physics-driven model (Akiki et al. 2017a,b). The
resulting hybrid model was shown to considerably enhance the accuracy of the PIEP model
particularly at higher solid volume fractions.

The fast-growing trend of machine learning (ML) and data-driven algorithms has
brought new prospects to fluid flow modelling. Data-based methods have already been
present in the context of dimensionality reduction techniques and are hence not alien
in the fluids community (Kutz 2017). Neural networks are a popular subset of ML
techniques that have been applied with ground-breaking success to image (Krizhevsky,
Sutskever & Hinton 2012) and speech (Hinton et al. 2012) recognition tasks. Neural
networks are shown to be universal function approximators (Hornik, Stinchcombe &
White 1989), and are thus capable of mapping input features to output variables in complex
multidimensional problems rife with strong inherent nonlinearities. The tempting power
of ML has motivated a major effort towards its applications in fluid flow simulations,
especially turbulent flow modelling. Several works have focused on improving closure
terms in the widely used Reynolds-averaged Navier–Stokes models using ML algorithms
(Ling & Templeton 2015; Ling, Kurzawski & Templeton 2016; Wu, Xiao & Paterson 2018;
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Duraisamy, Iaccarino & Xiao 2019), and fewer on large eddy simulation modelling (LES)
(Maulik et al. 2018; Beck, Flad & Munz 2019; Xie et al. 2019a,b; Yang et al. 2019).
There has also been attempts in the context of multiphase flows to develop closure models
for TFM simulations (Ma, Lu & Tryggvason 2015; Jiang et al. 2019). Another direction
pursued by some researchers is to take advantage of convolutional neural networks
(LeCun, Bengio & Hinton 2015), commonly used in image recognition tasks, for direct
approximation of flow field variables (Guo, Li & Iorio 2016; Sekar & Khoo 2019). Despite
its seeming success, a crucial fact about ML is that its high accuracy and flexibility are
achieved at the expense of supplying large amounts of data for the purpose of training. ML
algorithms such as neural networks require large volumes of data to find fitting functions
through adjustment of their parameters (i.e. weights and biases). This process, also
known as the ‘learning’ or ‘training’ phase, is an iterative optimisation procedure aimed
at minimising errors between the real data and those predicted by the algorithm. This
approach works successfully for computer vision tasks, for example, due to an abundance
of labelled data and the interpolatory nature of the problem (Sun et al. 2019). However,
the application of off-the-shelf ML techniques to flow dynamics problems (or any other
physical phenomena for that matter) inevitably suffers from non-interpretability in terms
of governing physics due to ML’s ‘black-box’ nature. Another issue that practically
impedes ML application in physical systems such as particle-laden flows is that we can
generate, at best, no more than a few thousand or a few tens of thousands of samples
(e.g. force and torque on each particle) with PR-DNS. Consider that even for the most
idealised case of mono-dispersed spheres, we would still have to sweep the parameter
space of Re and φ. In such a ‘small data’ regime (Raissi, Perdikaris & Karniadakis 2019),
the full power of neural networks may not be exploited unless the physics equations are
incorporated, or ‘hard-coded’ in the structure of the algorithm. This can be achieved
by directly minimising residuals of the governing equations through loss functions and
hence ensuring the physical fidelity of the predictions, giving rise to ‘physics-informed’
deep learning algorithms (Raissi & Karniadakis 2018; Raissi et al. 2018, 2019). Even if
successful in prediction (within the range of training dataset at best), the initial spark of a
theory-blind conventional ML model quickly fades away since even at its peak, it still is
a ‘glorified curve-fitting’ procedure (Succi & Coveney 2019) and without guiding theory,
such pure empiricism fails to provide knowledge (Coveney, Dougherty & Highfield 2016).
A physics-informed ML approach (Raissi & Karniadakis 2018; Raissi et al. 2018, 2019)
offers an advantage in that respect due to having physical fidelity engraved in its core.
Even if an accurate ML model is at hand, there exists another issue in the framework
of EL simulations. In the DEM-CFD approach, the hydrodynamic force on each particle
has to be evaluated at each time step. A deep neural network typically runs the input
through hundreds or even thousands of pre-tuned parameters to output a single prediction,
incurring a significant computational cost on the EL simulation.

In the present work, we propose a novel data-driven model that relies on
force/torque-conditioned probabilities of particle arrangements extracted from PR-DNS
in order to correlate hydrodynamic forces and torques to the unique neighbourhood
of each particle. In the remainder of this work, we refer to our model as the
microstructure-informed probability-driven point-particle (MPP) model. We will provide
probabilistic arguments for the prediction of force/torque fluctuations, and apply our
method to the data from PR-DNS of fixed beds of randomly distributed spherical particles
at various Reynolds numbers and solid volume fractions. After validating our results
with the existing literature, we then evaluate the accuracy of our model’s predictions and
demonstrate its performance by providing comparisons with PR-DNS force and torque
data.
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2. PR-DNS of fixed beds of spheres

2.1. Governing equations
Conservation of momentum and mass for the fluid phase is expressed in terms of
incompressible Navier–Stokes and continuity equations for a Newtonian fluid as follows:

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, (2.1)

∇· u = 0, (2.2)

where u, p and Re respectively denote the fluid velocity vector, pressure and particle
Reynolds number, defined as

Re = ρUd
μ

= ρ(1 − φ)usd
μ

, (2.3)

where ρ, μ are the fluid phase density and dynamic viscosity. The particle Reynolds
number is defined based on the superficial velocity U = (1 − φ)us, and us represents the
average interstitial fluid velocity. In (2.1) and (2.2) and what follows, all variables are
non-dimensionalised with respect to the particle diameter d as the length scale, U as the
velocity scale, ρU2 as the pressure scale and ρU2d2 as the force scale. The hydrodynamic
force and torque exerted on each particle denoted by F and T are given as

F =
∫

S

[
−pI + 1

Re
(∇u + ∇uT)

]
· n dS, (2.4a)

T =
∫

S
r ×

[
−pI + 1

Re
(∇u + ∇uT)

]
· n dS, (2.4b)

with S denoting the surface enclosing the solid body, I the identity matrix, (·)T the matrix
transpose, n the unit vector normal to the boundary of the solid body and r the position
vector relative to the particle centre of mass.

2.2. Numerical method
As our PR-DNS tool, we use PeliGRIFF (Parallel Efficient Library for GRains in
Fluid Flow) which is a multiphase flow solver based on the distributed Lagrange
multiplier-fictitious domain (DLM-FD) formulation proposed by Glowinski et al. (1999).
In our implementation, we employ a finite-volume staggered-grid scheme for the fluid
conservation equations (Wachs et al. 2015). Similar to the IBM, particles are immersed in
the fluid domain in the DLM-FD method and rigid-body constraints on the fictitious fluid
inside the solid region are enforced through a set of Lagrange multipliers collocated in the
particle domain. For a fixed array of particles, the combined momentum and continuity
equations in a non-variational form are given as

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u − λ in D, (2.5a)

∇ · u = 0 in D, (2.5b)

u = 0 in P, (2.5c)

where the solid domain is denoted by P and the fluid–particle domain by D. Furthermore,
λ shows the distributed Lagrange multiplier vector which is used to enforce the rigid-body
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motion constraint (2.5c). For the temporal discretisation, we employ a first-order
Marchuk–Yanenko operator-splitting algorithm. At each time tn+1, we solve:

(i) A classical projection scheme for the solution of the Navier–Stokes problem: find
un+1/2 and pn+1 such that

ũn+1/2 − un

Δt
− 1

2Re
∇2ũn+1/2

= −∇pn + 1
2Re

∇2un − 1
2

(
3un · ∇un − un−1 · ∇un−1) − λn, (2.6a)

∇2ψn+1 = 1
Δt

∇ · ũn+1/2
,

∂ψn+1

∂n
= 0 on ∂D,

⎫⎪⎪⎬
⎪⎪⎭ (2.6b)

un+1/2 = ũn+1/2 − Δt∇ψn+1, (2.6c)

pn+1 = pn + ψn+1 − Δt
2Re

∇2ψn+1. (2.6d)

(ii) A fictitious domain problem: find un+1 and λn+1 such that

un+1 − un+1/2

Δt
+ λn+1 = λn, (2.7a)

un+1 = 0 in P, (2.7b)

where Δt denotes the time step, ψ the pseudo-pressure and ∂D the domain boundary. In
(2.6a), second order in time Crank–Nicolson and Adams–Bashforth schemes are used to
discretise the viscous and advective terms, respectively, and the saddle-point problem in
step (ii) is handled by an Uzawa algorithm (Wachs et al. 2015). Considering the high-order
correction of the pressure, the projection scheme in step (i) is also second-order accurate
in time. However, the first-order time discretisation of the fictitious domain sub-problem
in step (ii) and the first-order Marchuk–Yanenko method reduce the global time accuracy
of our algorithm to first order only. Equations presented in step (i) are spatially discretised
with a second-order central scheme for the diffusion term, whereas the advective term is
treated with a total variation diminishing scheme combined with a Superbee flux limiter.
Despite the second-order discretisation of the flow equations, the accuracy of our method
is between first and second order due to the presence of rigid bodies immersed within the
domain. It can be shown that with the DLM-FD method, the Lagrange multiplier λ can be
directly integrated over the volume of each particle to obtain the hydrodynamic force and
torque acting on the particle P

F =
∫

P

λ dx, (2.8a)

T =
∫

P

r × λ dx. (2.8b)
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φ Re d/Δx L Np

0.1 2 24 25 2984
0.1 10 24 25 2984
0.1 40 24 25 2984
0.1 150 32 25 2984

0.2 2 24 20 3055
0.2 40 32 20 3055
0.2 150 40 20 3055

0.4 2 32 15 2578
0.4 40 40 15 2578
0.4 150 48 15 2578

TABLE 1. Summary of the parameters used for PR-DNS of fixed beds of spheres.

2.3. Simulation set-up
A summary of all considered cases is given in table 1. For our PR-DNS simulations,
we consider triply periodic cubic domains of edge length L containing Np spherical
particles each taking up a volume of vp = π/6, corresponding to a solid volume fraction of
φ = Nvp/L3. A constant flow rate so as to attain the desired Reynolds number is imposed
in the x direction using a dynamically adjusted pressure drop. The x direction hence
corresponds here to the streamwise direction. As noted by Akiki et al. (2016), Tenneti
et al. (2011) demonstrated that using a domain size of only 2.4d guarantees the
decorrelation of fluid velocities for (Re, φ) = (20, 0.2) and (Re, φ) = (300, 0.2). Our
computational domains given in table 1 all extend far beyond 2.4d containing ≈2500–3000
particles each, ensuring both the decay of fluid correlations and statistical reliability.
Initialisation of particle locations for cases where φ ∈ {0.1, 0.2} is performed by
distributing spheres randomly in the domain according to a random number generation
algorithm without allowing any overlap. For the highly dense cases with φ = 0.4, we start
with a structured array of particles where each particle is given a random translational and
rotational velocity, and we let the system reach an asymptotic motionless state through
dissipative collisions. For all solid volume fractions, pair correlation functions have been
obtained and verified to be satisfactorily matching theoretical radial distribution functions
of hard spheres (Percus & Yevick 1958; Wertheim 1963). Visualisations of two sample
cases in the present study are shown in figure 2. The time step is taken to be smaller
than Δt = 2 × 10−3 in all cases, ensuring time accuracy of the simulations along with
satisfying the Courant–Friedrichs–Lewy (CFL) condition; namely, CFL < 0.4 for the
spatial resolutions presented in table 1. The simulations have been run until steady state
is achieved, and force and torque data are all collected from the steady part. For Re = 150
at all volume fractions, the flow becomes time dependent and oscillating. This occurs
because particles in close proximity act as a single obstacle and hence increase the
effective length scale and the Reynolds number. Data from these cases are collected
after a statistically pseudo-stationary state is established by averaging over sufficiently
extended time intervals. In terms of computational demand, the mesh resolution and the
domain size in each case along with the load per CPU core dictate resource requirements.
With each processor core handling 512 × 103 grid cells, the smallest simulations with
≈110 × 106 grid cells were run on 192 cores, whereas the largest ones with 512 × 106
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FIGURE 2. Fixed beds of spherical particles at Re = 40 and solid volume fractions of φ = 0.1
(a) and φ = 0.4 (b). The streamlines shown are coloured with respect to the fluid velocity
magnitude.

grid cells required 960 cores. All computations were carried out on groups of 48-core
nodes each equipped with ≈187 GB of memory, provided by the Cedar supercomputer
as a part of Compute Canada’s advanced research computing infrastructure (http://www.
computecanada.ca).

2.4. Validation
The aim in this section is to provide a comparison of the results of our PR-DNS simulations
with the reported drag correlations in the literature (Beetstra et al. 2007; Tenneti et al.
2011; Bogner et al. 2015; Tang et al. 2015). In terms of spatial resolution, our PR-DNS is
comparable with the work of Bogner et al. (2015) and Tenneti et al. (2011) for the range
of (Re, φ) considered here, but generally better resolved than simulations done by Tang
et al. (2015) and Beetstra et al. (2007). Nevertheless, validations are presented merely to
establish the accuracy of our code rather than intending to offer benchmarking data. The
ensemble-average drag is obtained by summing the drag force acting on each particles in
the bed and dividing by the total number of particles Np

〈Fd〉 = 1
Np

Np∑
i=1

F i · êx . (2.9)

Obviously, the normal components of the mean force 〈Fy〉 = 〈F · êy〉 and 〈Fz〉 = 〈F · êz〉
are both expected to be vanishingly small. In order to compare our data with the available
drag correlations, normalisation of forces is done with respect to the Stokes drag given as

Fst = 3πμ dU. (2.10)

As shown in figure 3, the drag computed for our cases listed in table 1 all lie within the
range of existing correlations and generally indicate good accordance. In particular, our
data seem to agree well with correlations proposed by Bogner et al. (2015) and Tang
et al. (2016) at Re = 150 where significant discrepancies are observed between different
correlations. In addition, we have also examined force distributions and the extent of data
scatter for each case in table 2. The magnitude of the ensemble-average lift force given as
〈FL〉 = 〈Fy〉 or 〈Fz〉 is practically zero for all cases, as expected. However, the ratio of the

http://www.computecanada.ca
http://www.computecanada.ca
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FIGURE 3. Validation of the drag data obtained from PR-DNS of the present work with
correlations of Beetstra et al. (2007), Tenneti et al. (2011), Tang et al. (2015) and Bogner
et al. (2015).

standard deviation of drag and lift shown by σFd/〈Fd〉 and σFL/〈Fd〉 are both significant and
σFd/〈Fd〉 turns out to be always greater than σFL/〈Fd〉. In cases where a rough comparison
is possible, our results for σFd/〈Fd〉 and σFL/〈Fd〉 in table 2 show a difference of ≈2 %–4 %
with those obtained by Akiki et al. (2016). A contributing feature that might explain the
difference is that our sample sizes for each case are significantly larger by a factor of 5–6,
rendering the results statistically more converged. This is obvious from the 〈FL〉 values in
table 2 compared with those reported by Akiki et al. (2016), as their mean lift data (while
still quite close to zero) are orders of magnitude greater than present results. According
to Akiki et al. (2016), realisation dependence alone could cause variance in σFd/〈Fd〉 and
σFL/〈Fd〉 of up to 2.7 % and 1.7 %, respectively.

2.5. Dataset construction
For the purpose of analysis and development of our model, we first need to construct
datasets corresponding to each simulation. Each dataset contains as many rows as the
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φ Re 〈Fd〉/Fst σFd/〈Fd〉 〈FL〉/Fst σFL/〈Fd〉
0.1 2 2.89 21.32 % 2.7 × 10−10 15.14 %
0.1 10 3.57 24.86 % 1.6 × 10−9 14.78 %
0.1 40 5.56 26.71 % 3.0 × 10−5 15.19 %
0.1 150 10.49 26.09 % 7.1 × 10−4 16.48 %

0.2 0.2 5.48 17.66 % 7.5 × 10−5 15.21 %
0.2 2 5.53 17.56 % −9.3 × 10−9 14.97 %
0.2 40 9.59 23.77 % 2.3 × 10−10 16.33 %
0.2 150 17.76 25.97 % −4.2 × 10−6 18.86 %

0.4 2 18.71 22.96 % 3.7 × 10−8 18.22 %
0.4 40 30.99 26.07 % 5.3 × 10−7 18.84 %
0.4 150 59.73 27.68 % 2.3 × 10−5 19.62 %

TABLE 2. Statistics of the drag and lift data for cases presented in table 1.

number of particles Np (which we call samples), while columns represent the input and
output variables. For each particle i, the set of position vectors of the neighbouring spheres
denoted by {rj=1, . . . , rj=M} along with the average fluid velocity ui around particle i
constitute the inputs, whereas the hydrodynamic forces and torques experienced by particle
i are the outputs that we aim to model. The position vectors of neighbours are expressed
relative to the location of particle i. The first 30 nearest neighbours are identified for each
particle i by looping over all other particles in the simulation. These neighbours are then
numbered from j = 1 to j = 30 depending on their relative distance, with j = 1 being the
closest. It is worthwhile noting that, since our simulations are performed in tri-periodic
domains, forces and torques on particles near boundaries could be affected by periodic
images of particles on the opposite side of the domain whose positions do not exist in the
simulation data. For this reason, prior to performing the neighbour identification loop, we
create the periodic image positions manually and explicitly insert them in the data so that
the periodic effects are correctly accounted for.

3. Probability-driven model

3.1. Motivation
As pointed out in § 1, we seek to predict the hydrodynamic forces and torques on
each particle as a function of the flow conditions, and more importantly, of the unique
neighbourhood of each particle as highlighted by (1.2). The hydrodynamic force and
torque exerted on each sphere may be decomposed and expressed as follows:

F i = 〈F i〉(Re, φ)+ ΔF i(Re, φ, {rj=1, . . . , rj=M}), (3.1a)

T i = ΔT i(Re, φ, {rj=1, . . . , rj=M}), (3.1b)

where ΔF i and ΔT i show the fluctuating contribution to the force and torque due
to the specific arrangement of neighbours surrounding particle i. Statistically, the
lateral components of 〈F i〉 and all components of 〈T i〉 are close to zero for a
sufficiently large number of particles in each simulation. In the streamwise direction, the
ensemble-average force 〈F i〉 is identical for all particles by definition and therefore only
depends on macroscopic variables, i.e. the Reynolds number and solid volume fraction.
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Many correlations exist that describe such a dependence as discussed in § 1. For this
reason, we henceforth focus on ΔF i and ΔT i in (3.1); namely, the deviations from the
mean arising due to the unique local neighbourhood of each particle.

The key question posed here may be expressed as follows: How does changing
the location of each neighbour affect the force and torque experienced by a particle?
The most obvious and naive strategy would be attempting multiple simulations where the
location of a single neighbour particle is changed systematically and the resulting effect
on forces and torques are recorded. The outcome would be similar to, for example, the
two-dimensional interaction maps given by Zhou & Alam (2016) for two neighbouring
cylinders characterising forces for various locations of a second cylinder. Assuming
a three-dimensional system, adding only one or two more neighbours to the scenario
makes the number of simulations needed for populating the modelling dataset an almost
intractable computational task. For their physics-based PIEP model, Akiki et al. (2017a)
needed to account for 15–40 closest neighbours to obtain good accuracy, which in three
dimensions translates into 45–120 input variables, respectively. It is well known that in
a data-driven framework, such systems are afflicted with the ‘curse of dimensionality’
(Hastie, Tibshirani & Friedman 2009). It means that constructing a reliable dataset for
a regression-type model requires millions of samples for each case, while we are only
able to model a few thousand particles with PR-DNS at best. The pairwise interactions
and order-invariance approximations utilised by Moore et al. (2019) for their data-driven
model is a good demonstration of a strategy for reducing the number of input variables to
a manageable level.

3.2. Theory
Consider a monodisperse random array of spherical particles with a volume fraction φ
subject to fluid flow with a Reynolds number Re. Let X and Y be two continuous random
variable vectors in a d-dimensional space (X ,Y ∈ Rd) with marginal probability density
functions (PDFs) fX (x) and fY ( y) where fX (x), fY (Y ) : Rd → R. By definition, PDFs in
general are required to satisfy the following conditions:

fX (x) ≥ 0,∫
fX (x) dx = 1,

⎫⎬
⎭ (3.2)

where the integration is performed on all possible values of x. The value fX (x) dx
represents the probability of X falling in the infinitesimal volume dx about x. Therefore,
the probability that the random variable X will happen to be in A is given by

P [X ∈ A] =
∫
A

fX (x) dx. (3.3)

The same properties similarly hold for fY ( y). The expected value of the random variable X
is the weighted average of all possible values of X , each value being weighted according
to its probability of occurrence (Ross 2010). The expected value of X is thus governed by
its probability density distribution fX (x), and is given as

E [X ] = 〈X 〉 =
∫

xfX (x) dx. (3.4)

The probability associated with a random variable may also be conditioned on another
random variable. For this case, fX |Y (x | y) may be defined as the conditional PDF of X
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given that Y assumes a particular fixed value y.

E
[
X | Y = y

] = 〈X | Y = y〉 =
∫

xfx| y (x | y) dx. (3.5)

Referring to (3.1), the three components of the force/torque fluctuations pertaining to
particle i are shown by ΔF i = (

ΔFi,x ,ΔFi,y,ΔFi,z
)T or ΔT i = (

ΔTi,x ,ΔTi,y,ΔTi,z
)T.

A particular configuration of the neighbourhood surrounding particle i is denoted by
Ri = {rj=1, . . . , rj=M}. Here, we present the analysis only for force fluctuations; namely,
ΔF , since the derivation of similar equations is similarly done for torque fluctuations ΔT .
From this point onwards, the subscript i is dropped from all variables in order to minimise
cluttering in the notations. Upon setting X = ΔF and Y = R, the following PDF

pΔF|R (ΔF | R) (3.6)

represents the probability distribution of the force/torque fluctuations given the locations
of M neighbours. In the above equations, R shows the set of position vectors
{r1, r2, r3, . . . , rM} belonging to the neighbours numbered according to their distance from
a reference particle, starting with j = 1 being the closest. Each distribution p (ΔF | R) is
to be obtained from collecting ΔF values experienced by particles that happen to have
the same neighbour configuration R, while no constraints are imposed on neighbours
{rj : j > M} located further away. The expected value of the PDF in (3.6) gives a prediction
of each fluctuating force/torque component as follows:

E [ΔF | R] = 〈ΔF | R〉 =
∫
ξpΔF|R (ΔF | R) dξ. (3.7)

Two extreme cases of M, the number of included neighbours, are worth elaborating on.

(a) M = 0: this means that no conditions are imposed on p, hence E[ΔF] = 0 and the
predicted force/torque is the same for all particles in the array. Such a situation
corresponds to, for instance, the conventional microstructure-ignorant correlations
of the form F · êx = 〈Fx〉(Re, φ) in case of the drag force.

(b) M → Np − 1: the positions of all neighbours in the particle array are imposed as a
condition on p, hence the variance of p tends to zero and the value of ΔF is uniquely
determined.

Since the problem is fully constrained in the latter case, the predicted value of ΔF
would be free of uncertainty. Put another way, p would no longer be a distribution per se,
but rather resembles a Dirac delta function instead:

lim
M→Np−1

E [ΔF | R] =
∫ +∞

−∞
ξδΔF|R (ξ − ΔFDNS | R) dξ = ΔFDNS, (3.8)

which is equivalent of having a dataset populated with an infinite number of samples. In
other words, this ‘ideal’ dataset would contain samples for each and every combination of
neighbour locations. Such a dataset would conceivably provide a full and exact description
of the problem, thus representing a solution to the Navier–Stokes equations. Consequently,
(3.6) can be viewed as a data-driven description of forces/torques exerted on each particle
within an array derived from probabilistic arguments, which is potentially capable of
predicting fluctuations with varying degrees of accuracy, depending on how constrained
we force p to be. It is crucial to realise that unless M = Np − 1, our best estimate of the
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fluctuating component E [ΔF | R] would be an average (i.e. the central tendency) of the
distribution, implying that for M < Np − 1, influence of neighbours whose positions are
not constrained is only accounted for in a statistical sense. Having established the notion
and properties of the conditioned force/torque PDFs, the probability-driven prediction of
a fluctuating component based on its corresponding distribution is given as

ΔFMPP = E [ΔF | R] =
∫ +∞

−∞
ξpΔF|R (ξ | R) dξ. (3.9)

The integral above may be split to cover the positive and negative force/torque
contributions separately, yielding

ΔFMPP =
∫ 0

−∞
ξpΔF|R (ξ | R) dξ +

∫ +∞

0
ξpΔF|R (ξ | R) dξ. (3.10)

The impeding hurdle with (3.10) is that computing ΔFMPP requires a priori knowledge
of the force/torque distributions for each and every possible configuration R. Such an
approach is clearly not feasible and certainly would not fulfil the goal of constructing
a model based on a limited dataset. An elegant alternative is to take advantage of
Bayes’ theorem for probabilities, which serves to convert a conditional probability
problem to its reverse case. According to the Bayes’ formula for distributions of
random variables (Papoulis, Pillai & Pillai 2002), fX |Y (x | y) = fY |X ( y | x)fX (x)/fY ( y).
Therefore, it follows that

pΔF|R (ΔF | R) = pR|ΔF (R | ΔF) pΔF (ΔF)
pR (R)

. (3.11)

Substituting for pΔF|R (ξ | R) in first integral in (3.10) yields

1
pR (R)

∫ 0

−∞
ξpR|ΔF (R | ξ) pΔF (ξ) dξ. (3.12)

Assuming the continuity of both pR|ΔF and pΔF and realising that pR|ΔF, pΔF ≥ 0, the
generalised mean value theorem for integrals can be applied to the above equation to give

αpΔF(α)

pR (R)

∫ 0

−∞
pR|ΔF (R | ξ) dξ =

[
αpΔF(α)

pR (R)

]
pR|ΔF (R | ΔF < 0) , (3.13)

where ξ = α is a constant value that belongs to the interval (−∞, 0]. Following the same
operations for the second integral of (3.10), there exists a value ξ = β in [0,+∞) for
which ξpΔF(ξ) can be brought out of the integral. Substituting results back in (3.10), we
arrive at the following:

ΔFMPP =
[
αpΔF(α)

pR (R)

]
pR|ΔF (R | ΔF < 0)+

[
βpΔF(β)

pR (R)

]
pR|ΔF (R | ΔF > 0) . (3.14)

Note that, according to (3.5), pR|ΔF (R | ΔF < 0) gives the PDF of particle
positions provided that the force/torque fluctuations obey ΔF < 0 (same applies to
pR|ΔF (R | ΔF > 0) when ΔF > 0). Since particles are assumed to be randomly, yet
uniformly distributed, pR(R) is expected to have an approximately constant distribution.
This can be verified by inspection of unconditioned particle location PDFs for
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various neighbours. Therefore, both terms inside the square brackets in (3.14) are constant
values and can be expressed as two coefficients cα and cβ . The final form of the
force/torque model reads

ΔFMPP(R,Re, φ) = cα p̃ (R | ΔF < 0)+ cβ p̃ (R | ΔF > 0) , (3.15)

where p̃ represents the conditional PDF pR|ΔF. It should be noted that the p̃ probability
maps depend on the Reynolds number and solid volume fraction, which is why ΔFMPP
is shown as ΔFMPP(R,Re, φ). Thus far, no approximation was involved in the derivation
of ΔFMPP, which means that in case a full knowledge of the aforementioned distributions
exists, (3.15) would be theoretically exact. Practically, however, for a dataset with a few
thousand samples the probability distributions p̃ (R | ΔF < 0) or p̃ (R | ΔF > 0)would be
extremely sparse, as alluded to in § 3.1. Taking N and D to denote sample size and number
of input dimensions, the data density would be proportional to N1/D. As D increases, it is
straightforward to see that maintaining a constant sample density requires exponentially
more data points. In our case, each neighbour adds three inputs to the problem, each
representing one component of the position vector rj = (xj, yj, zj). If, for instance, N1 =
1000 is deemed a sufficiently dense dataset to form reliable local averages when D1 =
M × 3 = 1 × 3 (i.e. a single neighbour considered), in case of 15 neighbours D2 = 15 ×
3 = 45, thus N2 = N(D2/D1)

1 = 100015. Ordinary PR-DNS-generated simulations of particle
arrays are far from being sufficiently dense for creating meaningful, reliable functional
forms for p̃. As a result, the curse of dimensionality precludes the construction of PDFs
in (3.15) in their current form. Any such effort is in fact bound to produce a severely
over-fitted model with almost no generalisable prediction capability. Consequently, instead
of attempting to obtain p̃ (R | ΔF < 0) and p̃ (R | ΔF > 0) directly, we suggest that

p̃ (R | ΔF < 0) ≈ cα,1 p̃1 (r1 | ΔF < 0)+ cα,2 p̃2 (r2 | ΔF < 0)+ · · ·

=
M∑

j=1

cα,j p̃j
(
rj | ΔF < 0

)
,

p̃ (R | ΔF > 0) ≈ cβ,1 p̃1 (r1 | ΔF > 0)+ cβ,2 p̃2 (r2 | ΔF > 0)+ · · ·

=
M∑

j=1

cβ,j p̃j
(
rj | ΔF > 0

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.16)

In the above equation, each function p̃j
(
rj | ·) is equivalent to a marginal probability

distribution which is obtained by integrating out the position rk of each and every
neighbour where k /= j in p̃ (R = {rk=1, . . . , rk=M} | ·). In other words, this approximation
only considers the effect of a single neighbour on the functional form of p̃, while
accounting for the presence of all other surrounding particles in an average manner. This
marginal distribution can be expressed as

p̃j
(
rj | ·) =

∫
p̃ (R | ·) dr1 . . . drj−1 drj+1 . . . drM. (3.17)

Equation (3.16) is reminiscent of the pairwise approximation employed by Moore et al.
(2019) for the purpose of reducing the number of independent variables by accounting
for the influence of only one neighbour at a time. In their data-driven model, the authors
also invoked the ‘order-invariance’ approximation, which removes the dependence of the
model functions on the neighbour number. This was done by weighting the functionals
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according to the probability of a particular neighbour being the jth closest neighbour.
In the MPP model, the neighbours first need to be sorted based on their distance to the
reference particle. Each neighbour’s position can be then passed to the appropriate PDF.

Substitution of (3.16) in (3.15) leads to

ΔFMPP(R,Re, φ) =
M∑

j=1

cα,j p̃j
(
rj | ΔF < 0

) +
M∑

j=1

cβ,j p̃j
(
rj | ΔF > 0

)
. (3.18)

In (3.18), cα,j and cβ,j are constant unknown coefficients. With the final form of
ΔFMPP, we have assumed an additive nature for the effect that each neighbour might
have on the force/torque fluctuation experienced by a reference particle. Notably, both
distributions p̃j

(
rj | ·) (this notation is used to refer to a PDF with any arbitrary force/torque

conditioning) are now functions of three variables only; that is, the three components of
the position vector rj = (rj,x , rj,y, rj,z). This means that the functional form of the PDFs in
(3.18) can be conveniently inferred with a data-driven approach, as the high-dimensionality
of the input space has been evaded. To this end, a dataset can be constructed by running
PR-DNS of fixed beds for desired sets of parameters. The discrete estimation of the
distribution p̃j can be extracted by filtering neighbour positions according to the conditions
{ΔF < 0,ΔF > 0}. The discrete form of the distribution is then fitted with a multivariate
kernel density estimation (KDE) function (Chacón & Duong 2018) of the form

p̃ (r | ·) = 1
m

m∑
q=1

KH (r − rq), (3.19)

where
KH (r) = |H|−1/2K(H−1/2r). (3.20)

In the above equations, m shows the total number of samples after filtering with the
aforementioned conditions, H the bandwidth matrix and K is a symmetric density function
of choice. We select a Gaussian distribution as the kernel function defined as

K(r) = 1
(2π)D/2

exp
{
−1

2
rTr

}
. (3.21)

We will demonstrate and discuss particular examples of these functions in § 3.3. Now
that the appropriate functional forms are identified and known, it remains to decide the
values of the constant coefficients cα,j and cβ,j in (3.18). The values are obtained using the
ordinary least-squares method for linear regression

{cα,j, cβ,j}M
j=1 = argmin

Np∑
i=1

(
ΔFMPP,i − ΔFDNS,i

)2
, (3.22)

which minimises the residual sum of squares between values of force/torque fluctuations
predicted by the MPP model and the true values from PR-DNS. After optimal values for
cα,j and cβ,j are found, (3.18) can be used to make predictions for each particle based
on the particular microstructure of the surrounding particles. It is of great importance to
realise that in the presented approach, the model relies solely on the unique configuration
of neighbours surrounding each particle, and the PR-DNS-generated force/torque data (as
opposed to velocity and pressure fields) in order to make predictions. Consequently, the
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MPP model accounts for the combined effect of various force contributions such as the
undisturbed flow, quasi-steady and added-mass forces. This can be contrasted with the
PIEP physics-driven model (Akiki et al. 2017a) which uses perturbed velocity and pressure
fields together with the Faxén’s theorem to obtain hydrodynamic forces experienced by
each particle.

The above analysis applies identically to all force and torque fluctuation components;
namely,

(
ΔFx ,ΔFy,ΔFz

)
and

(
ΔTx ,ΔTy,ΔTz

)
. Let Cα denote a 1 × M vector that

contains the cα,j coefficients in (3.18)

Cα = (
cα,1 · · · cα,j · · · cα,M

)
(3.23)

and let PΔF<0 denote an M × 1 vector that contains the PDFs p̃j
(
rj | ΔF < 0

)
in (3.18)

PΔF<0 =

⎛
⎜⎜⎜⎜⎜⎝

p̃1 (r1 | ΔF < 0)
...

p̃j
(
rj | ΔF < 0

)
...

p̃M (rM | ΔF < 0)

⎞
⎟⎟⎟⎟⎟⎠ . (3.24)

Together with their counter-parts, i.e. Cβ and PΔF>0, the above vectors can be ultimately
defined for all force components. The complete model equations for force fluctuations can
thus be expressed in the following form:

ΔF MPP(R,Re, φ) =

⎛
⎜⎝

ΔFx

ΔFy

ΔFz

⎞
⎟⎠ =

⎛
⎜⎝

C x
αPΔFx<0 + C x

βPΔFx>0

C y
αPΔFy<0 + C y

βPΔFy>0

C z
αPΔFz<0 + C z

βPΔFz>0

⎞
⎟⎠ , (3.25)

where the superscripts of the coefficients indicate the corresponding component.
Following the above definitions, torque fluctuations are given as

ΔT MPP(R,Re, φ) =

⎛
⎜⎝

ΔTx

ΔTy

ΔTz

⎞
⎟⎠ =

⎛
⎜⎝

Dx
αPΔTx<0 + Dx

βPΔTx>0

Dy
αPΔTy<0 + Dy

βPΔTy>0

Dz
αPΔTz<0 + Dz

βPΔTz>0

⎞
⎟⎠ , (3.26)

where Dα, Dβ , PΔT>0 and PΔT<0 for each torque component are equivalent to Cα, Cβ ,
PΔF>0 and PΔF<0 in (3.25). Note that the vectors Cα, Cβ , Dα, Dβ , PΔF<0, PΔF>0, PΔT<0,
PΔT>0 each contain as many coefficients and PDFs as the number of included neighbours
M, the values of which depend on Re and φ of each case represented in table 1.

3.3. Probability distribution maps
In this section, we scrutinise a few of the probability distribution maps obtained for
different force/torque components and various neighbours. Before proceeding further, we
first describe the necessary steps taken for generating the foregoing distributions. In order
to construct the maps, those particles that satisfy the desired condition (e.g. ΔFx < 0
or |ΔFy| > σ , with σ being the standard deviation of the corresponding variable) are
identified and filtered by looping over the entire array of spheres. In this filtered subset
of the original data, the positions of the chosen neighbours are recorded. These positions
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constitute data points to which KDE functions in (3.19)–(3.21) are then fitted, thus giving
p̃j

(
rj | ·). The generated PDFs are functions of the three spatial coordinates, which makes

it impossible to visualise these functions directly. Inevitably, we resort to contour plots
of the PDFs; however, three-dimensional contour surfaces are also neither efficient nor
convenient to visualise. Consequently, we have opted for depicting their projections on
two-dimensional planes. In doing so, the contour surfaces are entirely compressed onto an
x–y plane. This is why the reference particle will be shown as a blank circle in contrast to a
solid disk, since the neighbouring spheres can happen to be located even at (x, y) = (0, 0)
when |z| ≥ 0.5.

In the case of streamwise force, all maps are in fact axisymmetric about the x axis;
meaning that the choice of the plane on which the maps are shown does not make any
difference, as long as it is parallel to the x axis. As for the lateral forces, the maps are
plane symmetric with respect to the same plane whose normal has the same direction as
the force component (e.g. p̃

(
rj | |ΔFy| > σ

)
would be symmetric about the y axis). For the

hydrodynamic torques, the maps are also plane symmetric but with respect to the plane that
contains the torque component. Owing to the symmetry about the streamwise direction,
the probability distribution map for |ΔFy| > σ shown on the x–y plane is essentially
almost identical to that for |ΔFz| > σ on the y–z plane. The same is also true for |ΔTz| >
σ on x–y and |ΔTy| > σ on y–z. Noting the existence of this similarity, only projections
on the x–y plane will be shown in this section. With an ideal densely populated dataset,
the PDFs are expected to exhibit perfect symmetry. The limited number of samples in
our dataset, however, causes some PDFs to show minor yet noticeable deviations from
symmetry. This would be particularly evident in PDFs generated for farther neighbours
due to the lower data density compared with closer neighbours. In what follows, statistical
symmetry is hence enforced in all PDF depictions.

Examination of the probability maps in all cases remarkably reveals quite distinct,
non-uniform and physically meaningful functional forms. Figure 4 shows the distribution
of the first (i.e. closest) neighbour positions, conditioned on two different ranges of the
streamwise force, while the blank circle in the middle of represents the reference particle
which experiences the hydrodynamic force or torque. According to these probability maps,
it is considerably more likely for a reference particle to experience higher than the mean
drag force when the closest neighbour is located laterally, and slightly downstream of
the particle. The right plot in figure 4 appears more intuitive: drag force diminishes
if the reference particle is shielded by the closest neighbour directly in front of it, as
expected. A somewhat less intuitive observation is that even if the neighbour happens
to be immediately downstream of the reference particle, drag force would be lower than
average, due to the suppression of the low-pressure region behind the reference particle. It
is crucial to stress this point once more that these maps demonstrate the higher likelihood
of coming across neighbours at particular regions depending on the condition imposed on
force/torque fluctuation. This means that, for instance, even if the closest neighbour occurs
to be located laterally, the drag force might be lower than average because the second
neighbour happens to directly shield the reference particle. It signifies the fact that while
accounting for the influence of one neighbour provides a great deal of valuable information
about the fluctuations, effects of other neighbours are indispensable in explaining the
force/torque fluctuation accurately.

Figures 5 and 6 show PDFs for the distribution of closest neighbours when conditions
are imposed on the lateral force in the y direction and on the lateral torque in the
z direction, respectively. Note that for demonstration purposes, we have chosen more
extreme conditions in figures 5 and 6, e.g. ΔFy > σ and ΔFy < −σ , and ΔTz > σ and
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FIGURE 4. (a) Unconditioned PDF of the first closest neighbour position and PDF of the first
closest neighbour position when the reference particle experiences a (b) higher than average or
(c) lower than average drag force. The PDFs are obtained for the case of Re = 40 and φ = 0.1.
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experiences a (a) higher than σ or (b) lower than σ lift, with σ being the standard deviation
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experiences a (a) higher than σ and (b) lower than σ lateral torque, with σ being the standard
deviation of the data. (c) The PDF of the first closest neighbour position when the lateral torque
is either higher or lower than σ . The PDFs are obtained for the case of Re = 40 and φ = 0.1.

ΔTz < −σ , respectively, in order to make the PDFs stand out more prominently. However,
the MPP model ((3.25) and (3.26)) is always constructed with the original positive and
negative conditioning (e.g. ΔFy > 0 and ΔFy < 0 for the lateral force in the y direction).
On the leftmost plot of figure 5, the reference particle is seen to experience a positive
lateral force in the y direction when the first neighbour is located within the region that
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lies mostly in the bottom right quadrant where x > 0 and y < 0, whereas a negative
lateral force results when the first neighbour happens to be on the opposite side where
x, y > 0 depicted in the middle plot. As pointed out by Prahl et al. (2007) for a staggered
arrangement of only two spheres, a higher than normal pressure field develops in the gap
between the two particles, which causes a repulsive force acting mainly on the upstream
particle. Upon increasing the distance between the particles, the fluid can penetrate the gap
more easily. The nozzle effect hence creates a low-pressure region in the gap which gives
rise to an attraction force. The latter does not appear in figure 5 as the first neighbour is
quite close to the reference particle, but regions corresponding to such a condition show up
remarkably on the PDFs for the lateral force in case we consider more distant neighbours.
The right most plot shows the PDFs conditioned with |ΔF| > σ , which is a combination of
the foregoing plots with {ΔF < −σ,ΔF > σ }. These are regions for which the reference
particle experiences a non-zero lateral force in the y direction.

In figure 6, we can see essentially the same kind of information as in figure 5. The most
critical regions for the modification of the torque are located where the highest amount of
vorticity is generated in the flow over a single sphere. As with the lateral force, the higher
pressure in the gap decreases the fluid velocity and the resulting vorticity. The vorticity
imbalance between the top and bottom regions of the reference particle brings about a net
torque exerted on the particle. The interpretation of the PDFs emerging from our analysis
is consistent with the observations made with a binary system of two spheres exhibiting
the same dependency of the forces on relative positions of the spheres (Prahl et al. 2007;
Yoon & Yang 2007). Such modification of the forces and torques were also elucidated
by Akiki et al. (2016). Our results imply that even when the system being modelled is
a dense multi-particle system, the forces and torques acting on each particle still vary in
the same manner on average, in response to the positioning of the closest neighbour. For
instance, when a particle happens to experience less drag force, it is most probably shielded
by an upstream neighbour (or supported by a neighbour immediately downstream with a
comparatively less probability) as shown on the right plot in figure 4. Although this may
not be always true, it is the most likely reason. Similar arguments apply in regards to all
other conditional PDFs involving lateral forces and torques as well.

Interestingly, similar patterns are found for neighbours located further away. An example
of the PDFs for farther neighbours is shown in figure 7. While the distributions are
spread out and have become fainter for surrounding particles located farther away from
the reference particle, regions with higher probability are discernible and turn out to be
generally in accordance with those obtained for j = 1, i.e. the closest neighbour. The
reason for the fact that the densities are smaller for j > 1 is twofold. First, farther particles
are distributed over a larger volume around the reference particle. The second and more
important reason is that the more distant particles are comparatively less likely to alter
the force/torque fluctuations. The functional forms of p̃ in (3.16) has been kept distinct
for each neighbour, meaning that p̃1 is a different function compared with p̃2, and they
both are different from p̃3 and so on. This is also reflected in the probability maps shown
in figure 7. A possible simplification can be made by combining all functions p̃j into a
single function p̃ that still contains the contribution of all included neighbours, except for
not making distinction based on the ordering of the neighbours. In this manner, instead
of filtering the locations of the jth neighbour, we filter the location of all the included
neighbours (up to j = M) based on the desired condition. It is to be noted that we still
retain the contribution of each neighbour to the net force/torque fluctuation by allowing
separate terms for every included neighbour in (3.16). That is to say, we construct only
one PDF, namely, p̃ using the entire neighbourhood, while each term p̃

(
rj | ·) is assigned

a separate unknown coefficient and influences the prediction of fluctuations differently.
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FIGURE 7. The PDFs of various neighbour positions for (a) ΔFx < −σ , and (b) ΔFx > σ ,
with σ being the standard deviation of the data. Note that the numbering represented by j is
based on proximity to the reference particle, where j = 1 shows the closest neighbour. The PDFs
are obtained for Re = 40 and φ = 0.1.

An example of such a combined PDF is shown for the streamwise force in figure 8(a)
for φ = 0.1. Comparing with figure 4, it is immediately obvious that the significant region
around the reference particle has expanded due to the influence of more distant neighbours.
Nevertheless, the general form of the maps that were obtained for j = 1 in figure 4 still
prevails even when all the neighbours up to j = M are included all at once. Another
remarkable observation can be made from figure 8(b), where PDFs similar to those in
figure 8(a) have been shown for the highest solid volume fraction of φ = 0.4. The PDFs in
figure 8(b) have gained fore-aft symmetry and are shrunk towards the reference particle,
reminiscent of the force maps obtained with the data-driven model of Moore et al. (2019)
at φ = 0.45.
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(a) Re = 40 and φ = 0.1, (b) Re = 40 and φ = 0.4.

4. Results and discussion

4.1. Practical aspects of implementation

4.1.1. Computational efficiency of KDE evaluations
Since the MPP model is to be used in EL simulations, at each time step it might be

necessary to compute the forces and torques for several thousand, or perhaps millions
of particles at once. The computational effort required for making predictions with the
model is thus an important matter. The MPP model summarised in (3.18) consists of a
handful of constant coefficients, multiplied by the same number of KDE-estimated PDFs.
For m evaluations given n sample points, evaluation of a KDE-estimated PDF by naive
kernel summation in (3.19) (which we use for model computations in this work) requires
a quadratic O(mn) operations, which may be computationally prohibitive for the practical
implementation of the MPP model. However, this issue can be circumvented to a great
extent by using efficient approaches that have been proposed over the past years, including
data binning with fast Fourier transform, fast sum updating, fast Gauss transform and
the dual-tree method (Langrené & Warin 2019). The computational cost can be reduced
from quadratic O(mn) operations to linear O(m + n) or O(m log m + n log n), resulting in
a vast improvement of computational efficiency by orders of magnitude compared with
naive kernel summation.

Another possibility for speeding up probability density estimations is to approximate the
density distributions with well-known functional forms such as polynomials or exponential
functions. As KDE is a non-parametric estimation method, the dataset based on which
predictions are made need to be stored in order to obtain KDE-estimated probability
densities. Using simpler functional forms obviates the need for storing the dataset, albeit
at the expense of potential loss of accuracy. Nevertheless, one needs to study the model
degradation due to such approximations versus the gained speed up in computations, and
decide how much of a trade-off is acceptable in a particular situation.
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4.1.2. Model hyper-parameters
In our model, there are a few parameters that need to be given values before making

predictions, and finely tuned to deliver optimal performance. These parameters are to
be distinguished from the set of unknown constants of regression in (3.22), which can
be deterministically found from the minimisation of sums of errors. Two important
hyper-parameters involved in our model are the kernel bandwidth indicated by H in (3.20)
and the number of included neighbours shown by M.

In its most general form the bandwidth is given by a symmetric, positive definite matrix
when multidimensional data are concerned. The bandwidth H significantly influences the
obtained KDEs through controlling the orientation and smoothing intensity of a kernel,
equivalent to the standard deviation of a Gaussian distribution. A very narrow bandwidth
results in a KDE with high variance, whereas an over-smoothed estimation is generated if
the bandwidth is too wide. The former tends to capture specificities of a particular dataset
resulting in an over-fitted model performing poorly on other datasets, while the latter fails
to acquire the crucial patterns in the data, giving an overall weak prediction capability.
Since in the present work, the neighbour positions are uniformly distributed in all three
dimensions, choosing the same bandwidth for all directions is sensible. In this case, the
bandwidth matrix is determined by a scalar h such that H = hJ with J being an all-ones
matrix. A rule of thumb for estimating an optimal value for the bandwidth is given by
Scott (1992) as h = σN−1/(D+4), with N as the number of samples and D as the number
of dimensions. In most of the cases in this work, we have used Scott’s rule multiplied
by a factor of 1–1.8. In most cases, a factor of >1 was necessary to avoid over-fitted
results.

The other critical parameter to determine before attempting to make predictions is the
number of neighbours to include in the modelling process. In low Reynolds number
regimes, the force/torque fluctuations for each particle depend on a large number of
surrounding particles (e.g. theoretically depending on each and every particle in the system
for Stokes flow) due to the dominance of the elliptic nature of the governing equations at
such regimes. In relatively inertial regimes, though, only a limited number of neighbouring
particles influence the deviation of the hydrodynamic forces and torques acting on a
particle from the average values. Akiki et al. (2017a) concluded that ≈15–40 and ≈10
closest neighbours were required for optimal modelling of drag and lift, respectively,
and that inclusion of more surrounding particles did not improve the quality of their
physics-driven PIEP model in terms of the coefficient of determination R2. For their
data-driven PIEP model (Moore et al. 2019), ≈13 neighbours for drag and ≈15 neighbours
for lift resulted in the best coefficient of determination. We have overall observed a similar
trend for our MPP model concerning the number of neighbours to be included. A large
number of neighbours have to be accounted for in lower Re for achieving maximum R2,
while this number decreases with the Reynolds number. Furthermore, we typically require
fewer neighbours to include in order to model the lateral forces and torques compared with
the streamwise force. Full details of the variation of the model quality with the number of
neighbours will be given in the following sections.

Finally, another choice to be made is the type of kernel in (3.20). Different types of
kernels such as parabolic (Epanechnikov), cosine, exponential and linear kernels can be
alternatively used to give the weighted-average value at each point. As pointed out by
Silverman (1986), bandwidth selection is much more of a concern compared with the
choice of the kernel, which can be legitimately based on the smoothness requirements or
computational effort involved in making evaluations. In line with Silverman (1986), our
experimentation with different types of kernels indicates that the choice of the kernel type



www.manaraa.com

900 A21-26 A. Seyed-Ahmadi and A. Wachs

does not remarkably affect the performance of the model, given that optimal values of
bandwidth are used.

4.1.3. Inclusion of average velocity
The channelling of the flow through the pores of a bed causes the fluid velocity

experienced by the particles to fluctuate from particle to particle. This variance of
undisturbed fluid velocity is partly dictated by the immediate neighbourhood of each
particle, but not entirely. A bundle of a few particles might be collectively fully exposed
to the fluid flow, while another group are mostly blocked by upstream neighbour groups.
In the former case, the drag on a particle inside the bundle is significantly affected by its
neighbours in the group, while in the latter case the particle would have experienced a
relatively small or perhaps no drag, with little influence from its neighbours as the drag
was not great to begin with. If we were able to include the effects of several neighbours
around each particle instead of the approximation employed in (3.16), the channelling
effect would theoretically be captured solely from the configuration of the neighbours. In
the present work, this information can be directly supplied to the model by including a
measure of the velocity seen by each particle. Since (3.18) is an approximation, linearly
adding the average velocity seen by the particle may enhance the model. Therefore, (3.18)
can be modified as follows:

ΔFMPP(R,Re, φ) =
M∑

j=1

cα,j p̃j
(
rj | ΔF < 0

)

+
M∑

j=1

cβ,j p̃j
(
rj | ΔF > 0

) +
3∑

d=1

cγ,duvd, (4.1)

where each cγ,d is an additional unknown coefficient, and uvd denotes an average velocity
component of uv in x , y or z direction. The estimation of fluid velocity seen by a
finite-size particle (i.e. undisturbed fluid velocity) within a multiparticle system is not
straight-forward, resulting in several definitions in the literature (Bagchi & Balachandar
2003; Kidanemariam et al. 2013). Kidanemariam et al. (2013) suggest the average of fluid
velocity taken on a spherical shell centred at the particle location as the characteristic
fluid velocity; a definition also utilised by Uhlmann & Doychev (2014) in their analysis
of settling suspensions of spheres. Here, we perform the phase-averaging in a spherical
volume about the location of each particle to obtain the fluid velocity seen by the particle

uv =
Nl∑

l=1

Φlul

/
Nl∑

l=1

Φl , (4.2)

where Φ is the phase indicator function, which is utilised in order to avoid sampling
velocity data inside the solid region, and Nl the number of grid points falling within
the spherical volume. The diameter of the averaging volume is chosen to be 4d for
φ = {0.1, 0.2} and 3d for φ = 0.4. The inclusion of the average velocity uv improves the
predictions in all cases, reflected in the increasing of R2 by up to 5 %. This improvement
is more pronounced for φ = 0.4, resulting in an increase of up to 15 % in the coefficient
of determination.
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4.2. Model assessment
As a measure of performance, we will use the coefficient of determination defined as

R2 = 1 −

N∑
i=1

(
ΔFMPP,i − ΔFDNS,i

)2

N∑
i=1

(
ΔFDNS,i − 〈ΔFDNS,i〉

)2

, (4.3)

where N is the number of samples used for the computation of R2. Also, we note that
〈ΔFDNS,i〉 = 0 by definition. The coefficient of determination can be interpreted as the
fraction of variations that are explained by the model. As such, R2 = 0 implies that the
particle-to-particle force/torque fluctuations are not captured at all and the model does not
perform any better that giving a single average value for all particles. On the other hand,
R2 = 1 would indicate a perfect fit; i.e. fluctuations predicted by the model exactly match
those obtained from PR-DNS.

With every data-driven model, it is necessary to ensure that the model has not only fitted
the data in a satisfactory manner, but is also able to generalise its predictions to unseen
data. Complex data-driven models in the realm of ML such as neural networks often have
numerous unknown parameters which makes them prone to overfitting, particularly when
dealing with small datasets. Put another way, an over-fitted model simply memorises the
dataset thanks to its huge set of parameters, while it performs poorly when presented
with unseen data. One strategy to prevent over-fitting and to assess the generalisation
capability of a model is to split the dataset into a training set and a smaller validation
set, so as to fit the model using the former and test its performance on the latter. This
technique, commonly known as the hold-out method, works well if used with sufficiently
large datasets. For datasets limited in size, such as data obtained from PR-DNS here,
not only the validation set might not be sufficiently representative, the dataset is only
partially utilised to train the model (Witten et al. 2016). The K-fold cross-validation is
an assessment technique that randomly partitions the dataset into K subsets or ‘folds’, so
that one of these folds is held out for testing while the model is trained on the rest of
K − 1 folds. This process is repeated with every partitioning such that the entire dataset
has been used both for training and for validation. Any measure of error or accuracy and
also the model’s parameters may be averaged to give a more reliable estimation of the
performance. To ensure the prediction reliability of the MPP model, we employ the K-fold
cross validation with K = 8 where multiple rounds of cross-validation are performed using
K subsets of the data. All reported results are thus the averaged values over multiple rounds
so that a reliable estimate of the model’s predictive performance is achieved.

4.3. Performance of the MPP model
The results of the MPP model’s predictions and comparison with our PR-DNS data are
presented in terms of the coefficient of determination R2 in table 3. Note that we have
deliberately avoided inclusion of data for ΔFz and ΔTy , as the results obtained for these
variables are equivalent to those for ΔFy and ΔTz, respectively. The green and light green
cells in table 3 refer to cases for which R2 ≥ 0.7 and R2 ≥ 0.6, respectively, and cells
highlighted in red represents cases for which R2 ≤ 0.5. Overall, the MPP model exhibits
a remarkable ability to correlate the observed force/torque deviations from the average
values to the specific neighbourhood of each particle. Our proposed model is able to
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φ Re ΔFx ΔFy ΔTz

0.1 2 0.84 0.78 0.85
0.1 10 0.80 0.76 0.80
0.1 40 0.70 0.69 0.64
0.1 150 0.57 0.53 0.38

0.2 0.2 0.71 0.71 0.85
0.2 2 0.76 0.74 0.86
0.2 40 0.71 0.66 0.70
0.2 150 0.62 0.55 0.48

0.4 2 0.54 0.53 0.69
0.4 40 0.67 0.58 0.64
0.4 150 0.61 0.47 0.52

TABLE 3. Performance of the MPP model represented by the coefficient of determination R2

for cases considered in this work.

explain up to 84 %, 78 % and 85 % of the drag, lift and torque variations, respectively,
in the best cases with a mean coefficient of determination of R2 = 0.68, 0.63 and 0.67
averaged over all cases. Except for three cases (shown in light red in table 3), at least
50 % of the particle-to-particle force/torque variations are captured by the model, while in
most cases the coefficient of determination is seen to be greater than 60 %. In figure 9
correlation scatter plots are shown for the stream-wise force or drag, the lateral force
or lift and the lateral component of the torque. For each hydrodynamic load, we have
selected three cases representing a range of Reynolds numbers and solid volume fractions
in increasing order, in order to demonstrate cases where the model exhibits varying degrees
of performance. The horizontal coordinate of each point on the plots shows the value of
the force/torque deviation obtained from PR-DNS, whereas the vertical coordinate shows
the value predicted by the present MPP model for the same sample in the dataset. The red
bisector in figure 9 indicates a perfect fit, for which ΔFMPP = ΔFDNS and R2 = 1. Notably,
the classical microstructure-ignorant drag correlations of the form F = 〈F〉(Re, φ) in § 2.4
would all lie on a horizontal line given by ΔF = 0 in figure 9, since these correlations only
give an average value for an entire ensemble of particles and are thus unable to explain any
particle-to-particle variation of the drag. Clearly, the MPP model is not perfect in any of
the cases, but the improvements over conventional correlations are substantial, reaching up
to R2 = 0.84, 0.77 and 0.85 for ΔFx , ΔFy and ΔTz in best cases where (Re, φ) = (2, 0.1).
As both Re and φ are increased from left to right in figure 9, the performance of the model
suffers to some extent. Remarkably, however, the drag variation is still captured up to 61 %
at the extreme case of (Re, φ) = (150, 0.4), while R2 remains in the range of 0.66−0.71
for all variables at (Re, φ) = (40, 0.2).

The approximation in (3.16) that p̃ (R | ·) (i.e. the PDF depending on locations of all
included neighbours) may be estimated as a linear combination of p̃j

(
rj | ·) functions

(i.e. marginal PDFs each depending on the location of only a single neighbour) imposes
an important limit on how accurate the model can be. For instance, in case the joint
distribution p̃1,2 (r1, r2 | ·) is practical to obtain, the functional form of p̃ for the first
neighbour would be different depending on where the second neighbour is located. In such
a situation, the PDF for the drag in figure 4 would no longer be axisymmetric about the
x axis; it would take on different forms depending on where the second closest neighbour
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FIGURE 9. Regression plots for the drag, lift and lateral torque for various Reynolds numbers
and solid volume fractions. The oblique red line in each plot shows an ideal fit.

is located. An example of such a case is shown on the left-hand side of the PDF in figure 10.
On the left plot, we have fixed the location of the second neighbour (shown as the grey
circle) to stay within a small radius of r2 = A = (−1, 1, z) on x–y plane, while the z
coordinate is left free. On the right, we have reiterated the right-hand side plot of figure 4,
where the PDF is obtained by conditioning only the drag and observing the locations
of the first neighbour. Obviously, the presence of the second neighbour has affected the
probability distribution of the first neighbour’s position which is indicated by pushing
the upstream probability density peak downwards and shrinking it simultaneously. This
alteration of the PDF is partially, but not merely, due to an exclusion of the space occupied
by second neighbour, but also owing to the modification of the flow field induced by
the particular positioning of the second neighbour. Notably, the first neighbour can still
happen to be located immediately upstream of the reference particle. In short, the second
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FIGURE 10. The PDF of the first closest neighbour position (a) having a second neighbour
(drawn as a dashed white circle) deliberately fixed on x–y plane at r2 = A = (−1, 1, z),
(b) PDF of the first closest neighbour position, same as in figure 4(c). The PDFs are obtained for
Re = 40, φ = 0.1.

neighbour influences how the first neighbour affects the reference particle. This type of
interaction dubbed as ‘ternary effects’, and also higher-order interactions of this type are
ingredients of the flow physics sacrificed in (3.16) in exchange for a functional form that
is practical to estimate.

In Stokes flow and dilute conditions, binary interactions prevail and high-order
interactions are negligible, and the net effect arising from different neighbours can be
given as a linear superposition of the influence of each individual neighbour. As the
Reynolds number increases, linear addition of effects can no longer account for ternary
and higher-order interactions, thus diminishing the validity of the linear combination of
effects employed in (3.16). Consider the relatively low solid volume fraction cases with
φ = 0.1 in table 3. As the Reynolds number increases, the performance of the MPP model
deteriorates as expected as a result of the superposition of each neighbour’s influence
in (3.16). The coefficient of determination R2, however, remains almost constant for φ =
0.2 and counter-intuitively improves for φ = 0.4 when the Reynolds number increases.
When φ = 0.4, the average interparticle distance is considerably smaller than for φ = 0.1
making the PDFs more flattened and uniform, thus reducing the variability of the extracted
probability map. The increase of the Reynolds number renders the distribution more
anisotropic to some extent (also reflected in the higher standard deviation of higher Re
cases for φ = 0.4 in table 2) which leads to an improved R2.

In order to be able to practically implement the MPP model, we separated the
influence of each neighbour on the force/torque fluctuations of a reference particle by
marginalisation of the probability distribution in (3.16), and expressed the net deviation
as the linear combination of all effects. Although this assumption resembles the pairwise
interaction assumption of Akiki et al. (2017a) in their physics-driven PIEP model, it is
nevertheless inherently different. The pairwise interaction approximation employed by
Akiki et al. (2017a) is based on binary interaction maps where there is no incorporated
notion of solid volume fraction. In (3.16), however, each functional p̃j

(
rj | ·) is obtained

for neighbour j in the presence of all other neighbouring spheres. In other words, p̃j
(
rj | ·)

appears as a binary interaction in which the effects of all other neighbours are averaged,
but still statistically present. This implies that the functional form of each p̃j is in fact
dependent on the solid volume fraction, which may explain the superior performance of
the present MPP model (and the data-driven PIEP model, for that matter) in a higher
particle concentrations compared with physics-driven PIEP model. For the purpose of
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comparison, with the MPP model R2 = 0.67 and 0.61 for drag in (Re, φ) = (40, 0.4) and
(Re, φ) = (150, 0.4), respectively; whereas R2 = 0.12 and 0.24 in (Re, φ) = (21, 0.45)
and (Re, φ) = (115, 0.45), respectively, with the physics-driven PIEP model. Although Re
and φ are not exactly the same for the cases here and for those considered by Moore et al.
(2019), a general comparison of results shows that the performance of the MPP model is
on par with the hybrid PIEP model which combines the physics-driven and data-driven
approaches.

Lastly, it must be pointed out that the present MPP model only considers static arrays of
spheres. In a general particle-laden flow situation, however, particles will be in motion
and the dynamic evolution of the system will depend on the positions as well as the
motion of the particles. With the current formulation, inclusion of the translational and
rotational velocity and acceleration of each neighbour in the PDFs of (3.18) will increase
their dimensionality, thus rendering them impractical to use in their present form. Future
investigations (similar to what has been done by Esteghamatian et al. (2017, 2018) for
conventional EL techniques) are needed to evaluate the MPP model’s performance when
implemented in EL simulations through comparisons with corresponding PR-DNS cases.
Such an assessment would be greatly beneficial in quantifying the significance of the
inclusion of translational and rotational velocity and acceleration of the neighbours, and
also to identify situations where such contributions might be more or less important.

5. Summary and conclusion

Numerical simulations are indispensable tools in analysing particle-laden flows, as
experimental investigation of this type of flow is both very costly if not entirely
impractical, while the extent to which details of these complex flows are available
to experimental measurements is also quite limited. Particle transport in microfluidic
separation devices or in highly dense particulate flows and heat transfer properties of
combustion fluidised beds are a few examples for which resorting to numerical tools is
inevitable in order to obtain the details of the physical processes. Most particle-laden
flows of practical interest host billions of particles and span a space orders of magnitude
larger than the size of individual particles. Even with the exponential growth of computing
power, resolving all relevant scales is not within reach in the foreseeable future. In a higher
intermediate (i.e. meso) scale, the fluid governing equations are averaged and solved
in sub-volumes each containing a few particles, treating the fluid in an Eulerian way
while still tracking each individual particle in a Lagrangian manner. Consequently, the
computational cost is substantially lowered at the expense of the need to supply closure
models for fluid–solid momentum exchange. As field variables are not available at the
particle level, hydrodynamic interaction forces and torques cannot be directly computed
and should hence be appropriately modelled. In relatively dense particle-laden systems, the
flow varies on the scale of the particle dimension due to the pseudo-turbulence created by
the neighbours. Conventional point-particle models that are parameterised only in terms of
the Reynolds number and average solid volume fraction fail to account for the effects of the
complex undisturbed flow on the drag. Microstructure-induced lateral forces and torques,
on the other hand, have been neglected entirely in such models by definition. Given the fact
that the physical fidelity of EL simulations directly relies on the accuracy of the interphase
coupling scheme, developing force/torque models capable of incorporating the influence
of local neighbourhood of particles is crucial.

In the present work, we have attempted to develop a deterministic model based on
probabilistic arguments for hydrodynamic forces and torques exerted on each individual
particle within a random array of fixed spheres. Owing to the unique neighbourhood
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of each particle, the flow in its vicinity is modified in a distinct way, giving rise to
significant force and torque variations. The principal idea exploited by our MPP model
is that conditioning force or torque deviations to positive or negative ranges results in the
emergence of particularly interesting, non-uniform distributions of neighbour locations.
That is to say, if particles (i.e. samples) that experience particular ranges of force/torque
fluctuations are filtered, and in turn the positions of their neighbours are examined, we
will find that their surrounding particles are always spatially distributed in remarkably
non-uniform manners consistent with our physical understanding of binary interactions
between two spheres. For instance, a neighbour located immediately upstream shields
a particle from the oncoming flow and eliminates the frontal high pressure region in a
binary system. Analysis of the neighbours distribution when the drag force is lower than
average clearly demonstrates that this is still true even in dense arrays of sphere, which
signifies that invaluable information can be extracted from PR-DNS for the dependence of
forces/torques on the local neighbourhood. If a particle experience a low drag force, it is
highly likely that the particle is shielded by an upstream neighbour. The same argument
holds for other force/torque-conditioned cases as well. It is critically important that while
in a binary system these observations are certain events, for an array of particles the
occurrence of such events is probabilistic in nature. Upon fixing the location of one
neighbour (i.e. M = 1), the configuration of all other neighbours is still free to randomly
change. Therefore, for a given location of a neighbour, the force/torque fluctuation on the
reference particle would be represented by a distribution, not a fixed value unlike in a
binary system. This is why the notion of the expected value is invoked in order to provide
an average value of the experienced force/torques for a given location of one neighbour.
Two conceptual extremes are worth reiterating.

(a) All neighbours are free (M = 0). In this case, the expected value for force/torque
deviation is zero, as the distribution is centred on ΔF = 0.

(b) All neighbours are fixed (M = Np − 1). The distribution of force/torque deviation
becomes extremely narrow (Dirac’s delta function) as all sources of fluctuation are
held fixed. The expected value for force/torque deviation approaches ΔF = ΔFDNS.

We note that in a binary system, M = Np − 1 = 1, therefore ΔF = ΔFDNS.
Theoretically then, this framework can have varying degrees of accuracy approaching
that of PR-DNS; practically, however, obtaining probability distribution maps for M > 1
requires exponentially more samples to sufficiently cover the input space of the problem.
We recognise the case M = 1 as representing first-order effects, while higher-order effects
may be captured by fixing the positions of two or more neighbours simultaneously (i.e.
M ≥ 2, which translates into, for instance, obtaining p̃ (r1, r2 | ·) instead of p̃ (r1 | ·) only).
In the present work, we have considered M = 1 as a first step of improvement over
microstructure-ignorant classical correlations. In order to estimate forces and torques, we
establish a framework to obtain the expected value of the force/torque deviations from
the mean by taking advantage of the force/torque-conditioned probability distribution
functions of neighbour locations. These distributions are approximated using KDEs which
serve as basis functions for regression. The effect of each neighbour on the deviations is
then linearly combined and the value of unknown coefficients is found through an ordinary
least-squares regression method. With M = 1, adding more neighbours results in the linear
addition of more terms, meaning that the functional form of the PDFs do not change.
For M = 2, the PDFs themselves would change depending on where the second neighbour
is located in addition to the firs neighbour, as alluded to in figure 10.
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FIGURE 11. Coefficient of determination R2 as a function of the number of included
neighbours M used for construction of the model.

We have generated a dataset consisting of several cases at various Reynolds numbers
and solid volume fractions relevant to dense particle-laden systems of interest. Following
the aforementioned discussion, the model is not expected to be perfect when M = 1.
Nevertheless, the MPP model demonstrates remarkable performance by explaining up
to 60 %–70 % of particle-to-particle force/torque variation in most cases, while for a
few cases in the low Re and φ the percentage of explained variance in the data rises
to up to 85 %. We experimented with the model to examine the dependence of the
model performance on the number of neighbours included in the superposition of effects.
(Note that in the present work, the probability distribution functions are all generated
by considering only one neighbour, i.e. M = 1. The number of included neighbours in
figure 11 only determines how many of these PDFs are superposed to make a final
prediction.) As shown in figure 11, we found out that inclusion of ≈20 neighbours is
adequate for gaining optimal performance for the streamwise force. The jump in R2 is quite
steep for lateral forces and torques, as the inclusion of ≈5–10 neighbours are sufficient to
achieve the maximum performance for most cases. Consequently, the MPP model requires
two probability distribution functions for negative and positive contributions, and a few
constant coefficients (≈10–40) to predict a significant portion of variations in force/torque
components for given Re and φ. Computing the probability densities requires evaluation
of the KDEs in (3.19), which in turn needs the dataset samples based on which the model
is constructed. The samples needed for KDE estimation can be easily stored and utilised
along with the constant coefficients to make predictions in an EL simulation.

According to the results obtained by our MPP model and also by the PIEP model (Akiki
et al. 2017a,b; Moore et al. 2019), the performance experiences a significant enhancement
by only considering the first-order effects, hinting an asymptotic behaviour with inclusion
of higher effects. Even though M = Np − 1 is theoretically needed (in construction of
PDFs) to reach the PR-DNS accuracy, we anticipate that even considering the second-order
effects properly renders the performance levels satisfactorily high to obviate the need
for making the model more complex, as the gain would probably not be significant for
M ≥ 3. On the one hand, accounting for the first-order effects of local microstructure
on forces and torques can effectively predict the occurrence of phenomena such as wake
attraction or DKT, which is deemed the dominant mechanism in preferential concentration
and clustering of suspensions (Yin & Koch 2007, 2008; Uhlmann & Doychev 2014;
Zaidi et al. 2014). On the other hand, we have previously shown that transverse particle
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velocity fluctuations and granular temperature are considerably underestimated by using
conventional drag correlations in EL simulations (Esteghamatian et al. 2017, 2018) due
to the unavailability of microstructure-induced lateral forces. The MPP model can play a
promising role in alleviating both challenges in current meso-scale simulation tools.
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